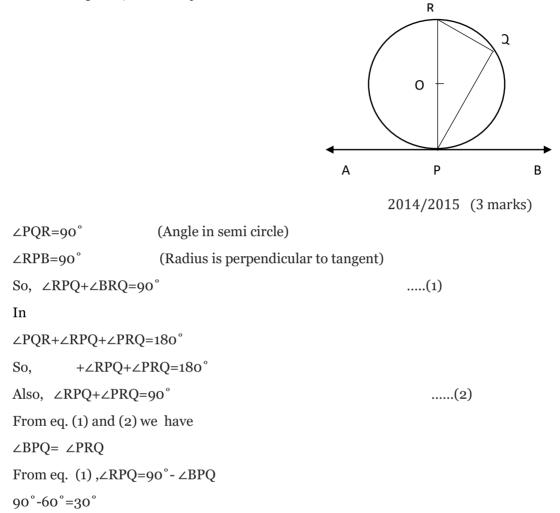
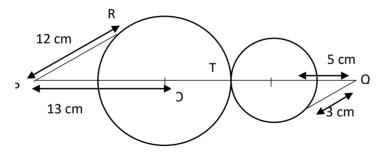
92) In the figure, AB is a tangent to a circle with center O. Prove that $\angle BPQ = \angle PRQ$. If $\angle BPQ = 60^{\circ}$, find $\angle RPQ$.



93) Two circles with centers at O and O' touch each other externally at T as shown:



If PR=12 CM, PO=13 cm, O'Q =5 cm and SQ=3 cm, find the length of line segment PQ.

CLICK HERE

>>

2014/2015 [4 marks]

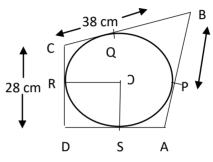
```
Join OR and O'S
In \triangleORP, \angleORP=90° (Radius is perpendicular to the tangent)
\therefore OR<sup>2</sup>=OP<sup>2</sup>-PR<sup>2</sup>
=(13)<sup>2</sup>- (12)<sup>2</sup>
```

Get More Learning Materials Here : 📕

R www.studentbro.in

=169-144 =25 So, $OR = \sqrt{25} = 5 \text{ cm.}$ \rightarrow OT = 5 cm (Radii of the same circle)Similarly, in $\triangle O'QS$, $\angle O'SQ = 90^{\circ}$ \therefore $O'S^2 = O'Q^2 - QS^2$ So, O'S = = 4 cm.

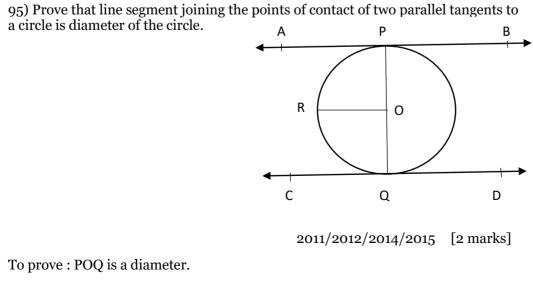
94) In the given figure, ABCD is a quadrilateral, in which $\angle ADC = 90^{\circ}$, BC = 38 cm, CD = 28 cm and BP = 25 cm. Find the radius of the circle with center O.



2014/2015 (2 marks)

13)

AS=AP(Tangents from external point are equal)BP=QB =25 cm(Tangents from external point are equal)QC = CR = (38-25)cm = 13 cm.(Tangents from external point are equal)RD=DS=(28-13)cm = 15 cm.(Tangents from external point are equal)So. Radius of the circle =OS=RD= 15 cm.(OSDR is a square)



Construction: Through O, draw OR||BA or OR||CD as AB and CD are parallel tangents.

CLICK HERE

🕀 www.studentbro.in

Get More Learning Materials Here : 📕

Proof: ∠OPA=90°(Radius is always perpendicular to tangent)

OR||BA (by construction)

 $\therefore \angle OPA + \angle POR = 180^{\circ}$.

→∠POR=180°-90°=90°

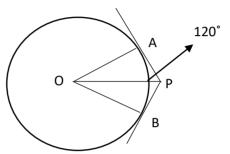
Similarly, $\angle QOR=90^{\circ}$

 $\therefore \angle POR + \angle QOR = 180^{\circ}$.

 \rightarrow POQ is straight line through the center O. So, PQ is a diameter.

96) Two tangents PA and PB are drawn to a circle with center O, such that

 $\angle APB = 120^{\circ}$. Prove that OP = AP+BP = 2AP.



2011/2012/2014/2015 (2 marks)

Let PA and PB be two tangents to the circle with center O (see figure)

Join OA and OB.

 $\triangle OAP \cong \triangle OBP (RHS)$

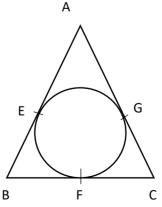
∠APO =∠BPO(CPCT)

$$=\frac{1}{2} \angle APB = \frac{1}{2} \times 120^{\circ} = 60^{\circ}.$$

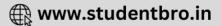
In right, △OAP,

 $\frac{AP}{OP} = \cos 60^{\circ} = \frac{1}{2}$ OP = 2AP = AP + BP(AP = BP).

97) If the isosceles triangle ABC of the figure given below, AB =AC, show that BF=FC.



Get More Learning Materials Here : 📕



2011/2012/2014/2015 (2 marks)

From the figure, AB = AC (Given)

Also, AE=AG (Tangents from the external points are equal)

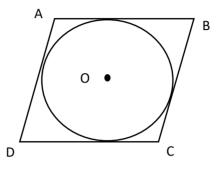
So,
$$AB - AE = AC - AG$$

 \rightarrow BE=CG(1)

But BE = BF and CG = CF (Tangents from external points are equal)

So, from eq. (1), BF = CF.

98) Prove that the parallelogram circumscribing a circle is rhombus.

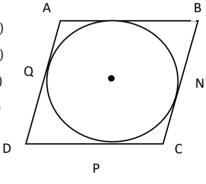


2014/2015 (2 marks)

: ABCD is a parallelogram touching the circle at M, N, P and Q. (see figure)

To prove: ABCD is rhombus.

Proof: AQ = AM(Tangents from external point)DQ=DP(Tangents from external point)BN=MB(Tangents from external point)NC=PC(Tangents from external point)



Adding the above, we get

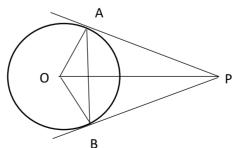
AD + BC = AB + CD.

But AD=BC and AB =CD. (Opposite sides of ||gm)

$$\rightarrow$$
 AD=AB=BC=CD

 \rightarrow It is a rhombus.

99) In the given figure, OP is equal to the diameter of the circle. Prove that ABP is an equilateral triangle.



Get More Learning Materials Here : 📕

let radius (OA) = r.

OP=2r.

Also, $\angle OAP=90^{\circ}$ (Tangent is \perp to radius through the point of contact). In right, $\triangle OAP$,

$$\operatorname{Sin}(\angle \operatorname{OPA}) = \frac{OA}{OP} = \frac{r}{2r} = \frac{1}{2}.$$

→ $\angle OPA=30^{\circ}$ Similarly, from $\triangle OPB$. $\angle OPB=30^{\circ}$ $\angle APB=30^{\circ}+30^{\circ}=60^{\circ}$.

Since PA =PB (lengths of tangents from an external point are equal), therefore

∠PAB=∠PBA.

In $\triangle APB$,

 $\angle APB + \angle PAB + \angle PBA = 180^{\circ}$ (Angle sum property of triangle)

 \rightarrow 60°+2∠PAB=180°

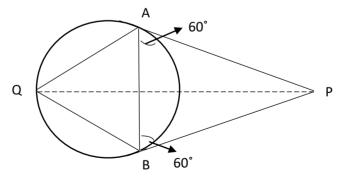
 $\rightarrow \angle PAB = 60^{\circ}$

→∠PBA=60°

Since all angles are 60° , therefore $\triangle ABP$ is equilateral.

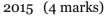
100) PA and PB are the tangents of a circle which circumscribes an equilateral ΔABQ .

If $\angle PAB=60^{\circ}$, as shown in the figure, prove that QP bisects AB at right angles.



CLICK HERE

>>

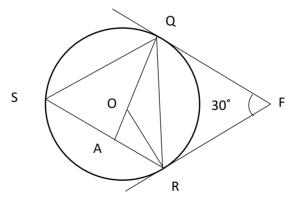


🕀 www.studentbro.in

 $\begin{array}{l} \angle QAB = 60^{\circ} \\ \angle QBA = 60^{\circ} \end{array}$ ($\triangle ABQ$ is equilateral)

So, $\angle PAQ = \angle PAB + \angle QAB = 60^{\circ} + 60^{\circ} = 120^{\circ}$			
Similarly	∠PBQ=120°		(1)
Now, in $\triangle PAQ$ and $\triangle PBQ$,			
	PA=PB	(Tangents from external point)
	AQ=BQ	(△ABQ equilateral)
∠PAQ =∠PBQ	$\angle PAQ = \angle PBQ$ (Each=120°, shown above)		
$\triangle PAQ \cong \triangle PBQ$		(b	by SAS)
$\angle APQ = \angle BPQ(CPCT)(2)$			
Let QP intersects AB at M.			
Now, in $\triangle PAM$ and $\triangle PBM$,			
∠APM=∠BPM	[F	rom (2)]	
PA=PB			
PM=PM			
So, $\triangle PAM \cong \triangle$	PBM	(by SAS)	
\rightarrow	AM=BM	((CPCT)(3)
and	$\angle AMP = \angle BMP$		(CPCT)
But $\angle AMP + \angle BMP = 180^{\circ}$			
$\rightarrow \angle AMP + \angle AMP = 180^{\circ}$			
\rightarrow 2 \angle AMP= 180°			
$\rightarrow \angle AMP = 90^{\circ}$		(4)	
From (3) and (4) we get that QP bisects AB at right angles.			

101) Tangents PQ and PR are drawn to circle such that $\angle RPQ = 30^{\circ}$. A chord RS is drawn parallel to the tangent PQ. Find $\angle RQS$.



2015 (4 marks)

Draw QA \perp PQ intersecting RS at A. So, \angle QAS=90°, because RS||PQ.

Also, QA will pass through center O of the circle. Join OR. $So \ge ROQ + \angle RPQ = 180^{\circ}$ $\rightarrow \angle ROQ + 30^{\circ} = 180^{\circ}$ $\rightarrow \angle ROQ = 150^{\circ}$ $\angle RSQ = \frac{1}{2} \angle ROQ.$ But So, $\angle RSQ = \frac{1}{2} \times 150^{\circ} = 75^{\circ}$. Therefore, from \triangle QSA, ∠SQA=180°-90°-75°=15°. Also we have: $\angle PQR + \angle PRQ + \angle QPR = 180^{\circ}$ $\rightarrow \angle PQR + \angle PRQ + 30^{\circ} = 180^{\circ}$ $(\angle PQR = \angle PRQ$ because PQ=PR) 2∠PQR=150° \rightarrow $\angle PQR = \frac{150^{\circ}}{2} = 75^{\circ}$ \rightarrow But ∠APQ=90° (Angle between tangent and radii) So, $\angle AQR = \angle AQP - \angle PQR$. $=90^{\circ}-75^{\circ}-15^{\circ}$. So, $\angle RQS = \angle SQA + \angle AQR$ =15°+15°=30°

Get More Learning Materials Here :

